21 research outputs found

    Holistic biomimicry: a biologically inspired approach to environmentally benign engineering

    Get PDF
    Humanity's activities increasingly threaten Earth's richness of life, of which mankind is a part. As part of the response, the environmentally conscious attempt to engineer products, processes and systems that interact harmoniously with the living world. Current environmental design guidance draws upon a wealth of experiences with the products of engineering that damaged humanity's environment. Efforts to create such guidelines inductively attempt to tease right action from examination of past mistakes. Unfortunately, avoidance of past errors cannot guarantee environmentally sustainable designs in the future. One needs to examine and understand an example of an environmentally sustainable, complex, multi-scale system to engineer designs with similar characteristics. This dissertation benchmarks and evaluates the efficacy of guidance from one such environmentally sustainable system resting at humanity's doorstep - the biosphere. Taking a holistic view of biomimicry, emulation of and inspiration by life, this work extracts overarching principles of life from academic life science literature using a sociological technique known as constant comparative method. It translates these principles into bio-inspired sustainable engineering guidelines. During this process, it identifies physically rooted measures and metrics that link guidelines to engineering applications. Qualitative validation for principles and guidelines takes the form of review by biology experts and comparison with existing environmentally benign design and manufacturing guidelines. Three select bio-inspired guidelines at three different organizational scales of engineering interest are quantitatively validated. Physical experiments with self-cleaning surfaces quantify the potential environmental benefits generated by applying the first, sub-product scale guideline. An interpretation of a metabolically rooted guideline applied at the product / organism organizational scale is shown to correlate with existing environmental metrics and predict a sustainability threshold. Finally, design of a carpet recycling network illustrates the quantitative environmental benefits one reaps by applying the third, multi-facility scale bio-inspired sustainability guideline. Taken as a whole, this work contributes (1) a set of biologically inspired sustainability principles for engineering, (2) a translation of these principles into measures applicable to design, (3) examples demonstrating a new, holistic form of biomimicry and (4) a deductive, novel approach to environmentally benign engineering. Life, the collection of processes that tamed and maintained themselves on planet Earth's once hostile surface, long ago confronted and solved the fundamental problems facing all organisms. Through this work, it is hoped that humanity has taken one small step toward self-mastery, thus drawing closer to a solution to the latest problem facing all organisms.Ph.D.Committee Chair: Bert Bras; Committee Member: David Rosen; Committee Member: Dayna Baumeister; Committee Member: Janet Allen; Committee Member: Jeannette Yen; Committee Member: Matthew Realf

    Using ecosystem landscape models to investigate industrial environmental impacts

    Get PDF
    ABSTRACT This article explores the use of ecosystem landscape models to estimate the environmental impacts of industrial activities at the regional / local scale. Integrated ecosystem and industrial modeling is first introduced within the context of life cycle assessment. Then, the use of integrated modeling to overcome problems stemming from the lumped parameter, static, site non-specific nature of life cycle assessment is discussed. Finally, the results of linking a handful of industrially relevant material and information flows demonstrate the ability of current ecosystem landscape models to respond to industrial burdens and estimate some environmental impacts

    Immunomodulation of murine collagen-induced arthritis by N, N-dimethylglycine and a preparation of Perna canaliculus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) and its accepted animal model, murine collagen-induced arthritis (CIA), are classic autoimmune inflammatory diseases which require proinflammatory cytokine production for pathogenesis. We and others have previously used N, N-dimethylglycine (DMG) and extracts from the New Zealand green-lipped mussel <it>Perna canaliculus </it>(Perna) as potent immunomodulators to modify ongoing immune and/or inflammatory responses.</p> <p>Methods</p> <p>In our initial studies, we treated lipopolysaccahride (LPS) stimulated THP-1 monocytes <it>in vitro </it>with increasing concentrations of Perna extract or DMG. Additionally, we treated rat peripheral blood neutrophils with increasing concentrations of Perna extract and measured superoxide burst. In subsequent <it>in vivo </it>experiments, CIA was induced by administration of type II collagen; rats were prophylactically treated with either Perna or DMG, and then followed for disease severity. Finally, to test whether Perna and/or DMG could block or inhibit an ongoing pathologic disease process, we induced CIA in mice and treated them therapeutically with either of the two immunomodulators.</p> <p>Results</p> <p>Following LPS stimulation of THP-1 monocytes, we observed dose-dependent reductions in TNF-Ξ± and IL-12p40 production in Perna treated cultures. DMG treatment, however, showed significant increases in both of these cytokines in the range of 0.001–1 ΞΌM. We also demonstrate that <it>in vitro </it>neutrophil superoxide burst activity is dose-dependently reduced in the presence of Perna. Significant reductions in disease incidence, onset, and severity of CIA in rats were noted following prophylactic treatment with either of the two immunomodulators. More importantly, amelioration of mouse CIA was observed following therapeutic administration of Perna. In contrast, DMG appeared to have little effect in mice and may act in a species-specific manner.</p> <p>Conclusion</p> <p>These data suggest that Perna, and perhaps DMG, may be useful supplements to the treatment of RA in humans.</p

    A Pilot Study of IL-2RΞ± Blockade during Lymphopenia Depletes Regulatory T-cells and Correlates with Enhanced Immunity in Patients with Glioblastoma

    Get PDF
    Preclinical studies in mice have demonstrated that the prophylactic depletion of immunosuppressive regulatory T-cells (T(Regs)) through targeting the high affinity interleukin-2 (IL-2) receptor (IL-2RΞ±/CD25) can enhance anti-tumor immunotherapy. However, therapeutic approaches are complicated by the inadvertent inhibition of IL-2RΞ± expressing anti-tumor effector T-cells.To determine if changes in the cytokine milieu during lymphopenia may engender differential signaling requirements that would enable unarmed anti-IL-2RΞ± monoclonal antibody (MAbs) to selectively deplete T(Regs) while permitting vaccine-stimulated immune responses.A randomized placebo-controlled pilot study was undertaken to examine the ability of the anti-IL-2RΞ± MAb daclizumab, given at the time of epidermal growth factor receptor variant III (EGFRvIII) targeted peptide vaccination, to safely and selectively deplete T(Regs) in patients with glioblastoma (GBM) treated with lymphodepleting temozolomide (TMZ).Daclizumab treatment (n = 3) was well-tolerated with no symptoms of autoimmune toxicity and resulted in a significant reduction in the frequency of circulating CD4+Foxp3+ TRegs in comparison to saline controls (n = 3)( p = 0.0464). A significant (p<0.0001) inverse correlation between the frequency of TRegs and the level of EGFRvIII specific humoral responses suggests the depletion of TRegs may be linked to increased vaccine-stimulated humoral immunity. These data suggest this approach deserves further study.ClinicalTrials.gov NCT00626015

    Plants in the garden: an approach to modeling the impact of industrial activities in ecosystems

    Get PDF
    Humanity's interactions with the supporting environment are, to state the obvious, complex. Humanity's industrial activities effect the environment over time and space, and the same activities even produce different results in different locations. Since the complexities of these interactions may preclude the successful use of eco-performance metrics, humanity may need a means of informing environmental management decisions that accounts for changes with time, spatial patterns and local uniqueness. The objective of this effort is to interface engineering and ecological systems models to better estimate environmental impacts by modeling the dynamic, spatially explicit and location dependent changes caused by industrial activities. Building upon previously developed, dynamic, spatially explicit, location specific ecosystem modeling software, a technical framework for estimating the impacts of industrial systems in ecosystems is developed. Ecological disturbances endemic to engineering systems are integrated into these existing ecosystem models. The results of these integrations are discussed, and from these results, the potential for estimating impacts using dynamic, spatially explicit and location based modeling is evaluated. In other words, one learns the result of placing industrial plants in mother natures garden.M.S.Committee Chair: Berdinus A. Bras; Committee Member: Farrokh Mistree; Committee Member: Matthew J. Realf

    ACKNOWLEDGEMENTS

    No full text
    The genesis of the ideas contained herein occurred somewhere in Carol Carmichael’s mind. Odd as it may seem, I stubbornly resisted implementing these ideas when she first espoused them. I thank Carol for continuing to espouse these ideas despite facing the furor of my counter arguments. Had she not taken up the cause of what I would later call eco-industrial modeling, I would still be searching for a thesis topic. I thank Dr. Bert Bras, my advisor and committee chair, for patiently supporting me during my often meandering master’s journey, and I thank him for allowing me latitude to chart the course of said journey. Drs. Matthew Realff and Farrokh Mistree deserve thanks for serving on my master’s thesis committee. Dr. Realff deserves special credit for observations and insights that furthered both the development and revision of this work. I acknowledge my colleagues in the ECDM and SRL for their camaraderie. Though we may find ourselves in different poleis, we are in league as graduate students. I especially thank Scott Duncan, Melissa Bargmann, Sharad Rathnam

    ECDM Research Overview (Bras Students) Presented to SRL Lab Mtg

    No full text
    Presentation given for SRL meeting Summer 2005Researchers in the ECDM program will develop methodologies and decision support tools that integrate the best business practices with those that produce superior environmental and social performance. Our research products will enable corporations to recognize, pursue and embrace triple bottom line goal
    corecore